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Abstract 
The ground based laser system for space debris cleaning will use powerful laser 
pulses, which can self-focused propagating through the atmosphere. We 
demonstrate that for relevant laser parameter the self-focusing can noticeably 
decrease the laser intensity on the target. We will show that the detrimental effect 
can be in great extent compensated by the optimal initial beam defocusing. The 
effect of laser elevation on the system performance will be discussed.  
Key words: laser, self-focusing, space debris  
Introduction 
The proliferation of satellites in Earth orbit, increasing both in number and value, 
makes the problem of collision with orbital debris very real. One of the most 
practical solutions for the problem is debris removal with the help of a ground based 
pulsed laser. In this approach laser pulses ablate debris material, change the debris 
velocity and move the debris to a lower orbit where natural burn-up takes place. 
This method of debris removal was analyzed by the “Orion” project [1, 2] where 
requirements for the laser and optical and tracking systems were summarized. Two 
things have changed since completion of that project. First, the risk of valuable asset 
damage has increased and is now so serious that governments may be ready to 
spend money on orbital debris removal. Second, a significant advance in the 
powerful pulsed laser technology has taken place, mainly at Lawrence Livermore 
National Laboratory (LLNL), with completion of the National Ignition Facility 
(NIF) Project [3]. Systems designed for inertial confinement fusion applications are 
a near perfect fit for the orbital debris removal application. 

 



 
 
           Fig.1. Schematic depiction of the laser space debris cleaning. 
 
We start the analysis with requirements for the laser pulse on the target. Then 

we discuss beam propagation and focusing to more completely define requirements 
for the laser. Based on this we specify a range of parameters for laser operation. We 
demonstrate that the laser pulse power greatly exceeds the critical power for self-
focusing in air. But because the laser light is propagated almost vertically, the self-
focusing length is much longer than the thickness of the atmosphere. Our numerical 
calculations demonstrate that the spatial structure of the beam on the target is 
smooth, without filaments, but the nonlinear effects noticeably decrease the peak 
intensity. We demonstrate that the atmosphere can be treated as an additional 
focusing lens, and preliminary beam defocusing can significantly compensate for 
the detrimental effects of the atmosphere. 

The detrimental effect of nonlinearity can be greatly reduced if the laser is 
placed at a high elevation. The reduction arises as the result of the decrease in the air 
density and the reduction of the atmosphere thickness through which the beam 
propagates. 

In the last section we discuss the role of additional nonlinear effects, 
including the beam broadening caused by atmospheric turbulence. We demonstrate 
that these detrimental effects are important, but argue that proper optimization of the 
laser and beam control system renders the ground based laser space debris cleaning 
approach feasible. 

 
1. Laser system requirements 
In this section we will formulate the required parameters for the laser pulses 
following [4]. We start from the interaction of radiation with debris. High intensity 
pulsed laser radiation incident on debris vaporizes the surface material, creating 
recoil momentum that changes the debris velocity. It is clear that an optimal laser 



intensity exists for any specified pulse duration. At low intensity, the surface 
temperature and evaporation rate are low and the recoil momentum is small. At high 
intensity, a large fraction of the laser energy is used to create a plasma, which 
contributes little to the momentum change of the debris. A crucial parameter for 
pulsed laser debris removal is the coupling coefficient mC , the ratio of momentum 
imparted to the target to the incident laser energy, /mC P E= Δ . A review of data 
illustrating the mC  dependence on intensity for different materials is presented by 
Phipps [2, 5]. The experimental data from different groups demonstrates that for 
broad ranges of wavelength, pulse duration, and pulse energy, the coupling 
coefficient maximum is reached at intensity 
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where τ(ns) is the pulse duration in nanoseconds. This numerical coefficient is valid 
for Al alloys but does not change much for different materials and wavelengths. The 
temporal dependence indicates that the surface temperature and ablation is 
controlled by the thermal flux from the surface. As a function of laser intensity, mC  
is peaked not far from the vaporization threshold, where plasma starts to be 
generated and absorptivity increases rapidly, which explains the weak sensitivity to 
target material. Typical values of mC  are 1-10 dyne/W [5]. Below mI , the coupling 
coefficient drops sharply as intensity is reduced while above mI , the coupling 
coefficient gradually decreases. The fluency corresponding to optimal coupling is 
given by 

 
22.5 / ( )F J cm nsτ= .    (1.2) 

 
We now derive the requirement for laser pulse energy that corresponds to 

delivering the optimal fluency to debris targets. The energy delivered by the laser to 
the vicinity of the target is required to be 

 
2E r Fπ= ,      (1.3) 

 
where r  is the radius of the beam in the target plane, and F is the fluency. An 
approximate expression for beam radius that accounts for beam quality and beam 
diffraction is  

2 2 Lr M
D

λ
π

= ,     (1.4) 

 
where 2M  is a factor describing the beam quality in comparison to an ideal 
Gaussian beam, λ  is the laser wavelength, L  is the path length from the beam 
director to the target, and D  is the diameter of the beam director. The effects of 
propagation through the atmosphere have thus far been ignored. The required laser 



pulse energy E  for delivering the pulse fluency for optimal coupling is found by 
combining eqns. (3-5), which gives 
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We now consider a specific example, in which 1mμλ = , 1000 kmL = , 

2D m=  and 2 2M = , the latter of which is a value that can be achieved for high-
energy lasers by using spatial filters and adaptive optics systems. The path length 

1000 kmL =  is chosen to represent the altitude where the most of debris are 
concentrated [2]. For this case, cmr 64≈  and the required pulse energy is 

32 ( ) kJE nsτ= . For a solid state, NIF-like laser system with short pulse duration 

the output energy is limited by the nonlinear effects in the optical elements. For 
longer pulses, the energy is limited by saturation of the extracted energy. The 
optimal pulse duration for this type of laser is about 4 ns  [4] and kJE 64≈ . 

For the above parameters the laser power is 16 TW, which is well above the 
critical power for self-focusing in air – 4.3 GWcrP =  for 1mμ  light. Even for the 
ideal beam quality 12 ≈M , the required power is over 1000 crP .The atmospheric 
turbulence and nonlinear effects can even further increase the required power. It is 
clear that the effect of nonlinearity on beam propagation must be considered. 

 
2. Modeling nonlinear propagation 
To avoid unnecessary complications, we first present the key concept using a 
simplified, though meaningful, model. The basic model reads: 
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Here, we consider a laser beam propagating vertically (compare to [6]). It is not 
very different from the optimal angle for the interaction with debris, which is ~ 30 
degree from the vertical [4]. This simplification is not important, but will simplify 
the presentation. 

It is customary to introduce dimensionless variables: 
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Here 0z = corresponds to sea level. We assume the commonly used 
exponential density dependence with the atmosphere height -6 km 

( ) ( ) ( )0 0/ 0 exp / ,  6n z n z Z Z km= − = . The nonlinear effects decay with height as 



2 2 0( ) (0) exp( / )n z n z Z= ⋅ − . We use a normalization parameter 0r  to denote the 
initial radius of the beam (mirror radius), and normalize the power by 

( )2 2
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 For the parameters 

given above we get 11855 kmDL = , 0 0.339P = GW and 04 4.258 GWcrP Pπ= ⋅ =  for 
a Gaussian input beam. The equation has a Hamiltonian structure. 

The problem is characterized by two dimensionless parameters / crP P  and h , 
where typically 1h<< . One more dimensionless parameter related to the beam 
focusing will be introduced later. 

There are several important and well known relations for Eq. (2.1): 
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The relation (2.2) – ‘the Talanov theorem’ [7] is used to control numerical 
calculations. Usually the relation (2.2) is derived for uniform media, but it is valid 
for the inhomogeneous situation too. 

Let us consider the propagation of the initially Gaussian beam. On the 
surface, at 0z = , we have 
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Here 0r  is the initial beam size, 2
0 /C k r F= ⋅  is the initial beam pre-focusing 

parameter (F has a meaning of a focal distance that in this case is a debris height L), 
and inP  is the input power of a laser beam. C is the third dimensionless parameter of 
our problem, defined as /DC L Fa= . We solve the problem numerically for some 
specific parameters, but the situation with the same dimensional parameters will be 
equivalent.  We solve numerically NLSE (2.1) in the domain 0 , 0m mz z r r≤ ≤ ≤ ≤  
with 1000mz F= = km and 0/ 10mr r = . At 0r=  we use a symmetrical boundary 

condition, and at mr r=  the solution is set to 0A =  or is matched with the solution 
of the linear problem. 

We would like to stress that the problem under consideration, though similar 
in terms of the basic equation to numerous self-focusing studies [8], is rather 
different in terms of physics. The considered laser beam has a much larger spot size 
– over 1m . The self-focusing length of 1// −∝ crDSF PPLL   is much longer than the 



thickness of the atmosphere. This moves the self-focusing (collapse) point far 
beyond the atmosphere. In other words, we consider here the light propagation over 
a finite distance (the nonlinear layer of the finite thickness) and the collapse point is 
located beyond this region, where the propagation is linear. In this case the self-
focusing effect compresses the beam but without catastrophic collapse of all the 
energy into a small volume. This is a well known nonlinear lens effect and here we 
can use it to relax the conditions on the size of the beam pre-focusing mirrors. The 
numerical modelling strongly indicates that for the problem treated here, even for 
input powers well above the critical power for self-focusing, the beam can maintain 
its integrity and is compressed as a whole. 

The calculations were performed for r0=1 m, L=1000 km, and one micron 
light. The parameter maxCC = for the optimal focusing in the linear case is 5.93. The 
distribution of the laser intensity in the focal plane for few different values of / crP P  
is presented in Fig.2. 

  
Fig.2. The intensities are normalized to the peak intensity  

of the linear case for the focal point kmFz 1000== . 

 Red line: Pin / Pcr =1500 Blue lines: solid – 900/ =crin PP .  

Green line – 760/ =crin PP . Black line – linear case. 

 
The intensities are normalized to the peak intensity for the linear case. One 

can see the noticeable decrease in peak intensity for high / crP P . The effect 
increases with increases of power; I/Ilin  is 0.8 for / crP P  =760, 0.734 for / crP P  
=900, and 0.41 for / crP P  =1500. The main reason for the decrease is that the 
nonlinear lens results in the focusing of radiation before the focal point of the linear 
problem. In Fig. 3 we plot the intensity of the beam centre as a function of z, with 

/ crP P =1500, and we see that it peaks before the focal point 1000 kmz = . 
 



 
Fig.3. The intensity in the beam centre as function of z  for Pin / Pcr =1500 

The intensity is normalized to the initial peak intensity at the point of laser position. 
 

It is natural to try to compensate the nonlinear effects by preliminary beam 
defocusing, in our case by decreasing C. The results are presented in Fig. 4. We see 
that the proper initial defocusing can noticeably compensate the detrimental effect 
of nonlinearity. 

 

Fig. 4. Intensity, as a function of the ratio max/C C , where max 5,93C = .  

Here 0 1r = m, 1500in crP P=  and 1000z = km. 

 
The radial distribution of the beam intensity in the focal plane is presented in 

Fig. 5. 
 



 
 

Fig. 5. Intensity vs. r at different chirp parameters. Black line – linear case,  
blue line – C=5.93, and the red line corresponds to the optimal C=5.51.  

Here 0 1r = m, 1500in crP P=  and 1000z = km. 

 
We see that for the optimal defocusing the peak intensity drops only 0.7 times 

in comparison with non-compensated drop to 0.4, and the effect of self-focusing can 
be compensated to a great extent. 

Now, let us discuss the effect of the laser elevation. The nonlinear refractive 
index is proportional to the density of air, so placing the laser at a high elevation is a 
natural way to reduce the detrimental nonlinear effects and the effects of 
propagation. We have already discussed the three dimensionless parameters used to 
characterize the problem – / , /cr DP P L L , and 0/DL Z . From equation (2.1) one can 
see that positioning the laser at the height h is equivalent to a decrease 

( )2 0exp /n h Z−  times or an increase of ( )0exp /crP h Z  times. 

The height of the laser is small compared to the propagation distance L, and 
the change in /DL L  can be disregarded. As a result, a change in the laser altitude is 
equivalent to a change in / crP P  only. To take an example, the positioning of the 
laser at a height of 3 km reduces / crP P  to 0.6 times that at sea level. At 4 km (the 
height of Mauna Kea), reduces 0.51 times. Direct numerical modeling confirms 
these arguments; the change in the laser height is completely equivalent to a 
reduction in / crP P . 

The laser elevation is an equivalent to the reduction of laser power for the sea 
level laser. Therefore, the results presented in Fig. 2 can be interpreted as an 
intensity distribution in the focal plane for a laser power / crP P =1500 and laser 
elevations of 0, 3, and 4 km. We see that laser elevation helps to decrease the 
magnitude of the intensity reduction at the target. In the same way the initial 
defocusing will help to compensate the drop. 



Let us discuss qualitatively the self-focusing dependence on parameters. 
Consider the atmosphere as a nonlinear layer with the thickness Z0=6 km. The beam 
modulation resulting from nonlinear effects is characterized by the B integral [8, 9], 
the nonlinear phase shift between the central and outer parts of the beam with radius 
a after propagation through the layer. The B=1 or phase difference 2π is considered 
as a boundary when the nonlinear effects becomes important. It is convenient to 
write the B integral in terms of laser power 
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For the above parameters and 1500/ =crPP  the B integral ~3 and nonlinear effects 
are important. Laser elevation decreases )/exp( 0ZhB ∝  and reduces the nonlinear 
effects. 

Up to now all calculations were done for a fixed value of 10/ =LLD . Below, 
we present some calculations for longer diffraction length, mirror radius mr 20 = . 

The B integral drops ~ 2
01 / r  and the role of nonlinear effects drops rapidly. The 

radial distribution of intensity at the focal point is less effected by the self-focusing. 
The peak intensity for P/Pcr=1500 is decreased 2.44 times for linear focusing 
conditions and only 1.42 times for the optimal chirp. 

The further increase in power eventually results in filamentation and fast 
beam degradation. The filamentation starts with axi-symmetric mode [10] and our 
treatment is adequate for the initial stage of the process [10]. The beam destruction 
with power increases is demonstrated on Fig.5. We see strong drop in peak intensity 
after  P/Pcr  >2000 with formation of a ring filament which is impossible to correct in 
simple way. It means that for reasonable focusing of laser pulse we must keep the B 
integral below 3-4. 

 

 
 



Fig. 6 Radial intensity profile in focal point for the high laser power.  
Black line – / 1500crP P = , red line – P / Pcr = 2000 , 

blue line – 2500/ =crPP , green line – .5000/ =crPP  Here r0=1m 
 
The our results demonstrate that the intensity distribution for situations 

without filamentation looks close to Gaussian. In Fig. 6 we present the phase at 

different heights as functions of 2r . We see that the phase changes, but with good 

accuracy it is proportional to 2r , meaning that  despite the nonlinear effects, locally, 
the beam structure is close to a Gaussian one shape with beam size a and chirp C 
changing during the propagation  
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This fact provides us with the opportunity to introduce a simplified description of 
self-focusing, Using relation (2.2) one can get ordinary differential equations for 
a(z) and C(z). Analysis demonstrates that on the long propagation from the 
atmosphere to the focal point even the small deviation from the Gaussian shape are 
important and the simplified description should be carefully adjusted to account for 
this. The situation is different when laser pulse propagates from the orbit to the 
ground [11], when phase front aberration in atmosphere has no propagation distance 
to be developed and propagation is less sensitive to atmospheric propagation effects 
 

 
Fig. 7 Phase versus 

2r at different heights. Red line corresponds the height 100 km,  
blue – 300 km, green – 500 km, black – 700 km.  

Here 5,51C = , 0 1r = m and / 1500in crP P =  and * 3z km= . 

 
 

 



3. Processes affecting beam propagation 
 

Turbulent broadening 
Turbulence in the atmosphere scatters the light and produces broadening of 

the propagated beam. The scattering is induced by density and temperature 
perturbations, resulting in fluctuations of the refractive index. Let us estimate the 
effect of turbulence on the focusing of laser radiation. 

Atmospheric turbulence is usually treated as isotropic and uniform, with the 
Kolmogorov spectrum of turbulence. In this situation the correlation function for the 

refractive index ( )n r  fluctuations satisfy the relation 

( ) ( )( )2 2 2/3
1 1 nn r r n r C r< + − >= . 

The turbulence is characterized by the constant 2
nC . The typical values of 2

nC  are in 
the range of 10-13 -10 -15 1/m2/3 near the ground, and decrease with height. 

The most common semi-empirical model describing the beam broadening by 
turbulence in the linear approximation uses the following expression for the beam 

radius on the target tr :  
2 2 2 ,t cl turr r r= +  

where  
2

cl
Lr
D

λ
π

=  

is the diffraction limited spot radius, L  is the debris orbit height, D  is the focusing 
mirror diameter. In practical situations this value often must be increased by the 
beam quality factor. 

For turbulent broadening we use the Dowling/Breaux model [12], based on 
both theoretical studies and experiment. The most important parameter in the model 
is the Fried coherence length r0 
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In our case of a thin atmosphere this can be re-written as  
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In terms of r0 the spot radius at the target can be represented as [12] 
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In the expression (4.1) the focusing mirror is placed at 0=z  and the focal plane is 
at z L= . The multiplier ( )1 /s L−  in (4.1) means that scattering near the focus is 

less important than scattering near the mirror; the ray scattered near the mirror 



deviates from the beam axis even for free propagation, whereas the ray scattered 
near the focal spot has no time to deviate. This effect is unimportant in our case. 

To make progress, we need a model of atmospheric turbulence. A simple 
model that is used frequently assumes that the turbulence is maximal near the 
surface and, starting from the height 0 10 mz z= = , drops as 1 / z . Consider the 
height dependence as 

2 2 0

0

.n n
zC C
z z
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This model is applicable up to an altitude ~3 km; beyond that, the more complicated 
model, with an exponential decline of nC , i.e., the Hafnagel model [12] must be 
used. For simplicity, we set nC  to zero at the height 6 kmh = . For low turbulence 

levels ( 2 15 2/310nC m− −= ) the Fried coherence length will be about 1m, and even for 
a 2 m diameter mirror, turbulence can be a problem, broadening the beam. The 
turbulence problem can be greatly reduced by placing the laser on a high mountain, 
but even in this case it can be a problem for a large diameter mirror. 

The important nonlinear process, which can affect the powerful beam 
propagation, is stimulated Raman scattering. The dominant Raman process is 
rotational Raman scattering by nitrogen (SRRS) [13, 14]. In the atmosphere pressure 
broadening dominates up to the height L ~40 km, and the gain coefficient is 
independent of density and does not change substantially [13, 14]  

62,5 10 cm/MWG −≈ ⋅ .  
The total gain for Raman scattering to grow from the noise level to a level high 
enough to destroy the beam is gIL~20. From here we find that the SRRS is 

appreciable for intensities  22MW/cm . 
The above estimate assumes stationary SRRS. For pulses shorter than the 

Raman relaxation time, SRRS is in a non-stationary regime and the process 
threshold is increased [13, 14]. The relaxation time changes from 0.1 nsec on the 
ground to 10 nsec at 40 km. The threshold intensity is about 10 MW/cm2 for a 1 
nsec pulse and ~100 MW/cm2

 for 0.1 nsec. We see that, using the shorter pulses, we 
can suppress Raman scattering. 

The laser elevation only slightly reduces the amplification length (about 10% 
for h~4km), but increases in the relaxation time can greatly increase the Raman 
threshold. 

We must mention that the above estimates for the effects of Raman scattering 
are conservative. The threshold calculation [14] assumes that 1% of the radiation is 
converted to scattered light. Raman scattering is peaked in the forward direction, 
and energy losses are minimal. Even the noticeable scattering may not change the 
target irradiation. 

We see that the suppression of the various detrimental effects implies 
contradictory requirements. To suppress Raman scattering we need to increase the 



director diameter (to reduce the intensity). But this enhances the beam broadening 
by atmospheric turbulence. The shortening of the pulse to suppress Raman 
scattering decreases the laser system efficiency and increases the self-focusing. The 
design of a laser system for debris clearing must optimize both the physics and 
engineering requirements. But one thing is clear: a laser elevation ~ 4 km will 
greatly improve the system performance. 

 
Conclusions 

 
We demonstrated that for a ground based laser space debris cleaning system the 
self-focusing can greatly affect the beam propagation. Owing to the finite thickness 
of the atmosphere the self-focusing does not filament the beam but changes only its 
macroscopic parameters – focal length and beam size. We showed that the initial 
beam defocusing can, to a large extent, compensate the detrimental effect of 
nonlinearity.  

This work was performed under the auspices of the U.S. Department of 
Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 
07NA27344 and grant of Ministry of Education and Science of the Russian 
Federation (agreement No. 14.B25.31.0003). 
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